
Journal o f  Thermal Analysis, Vol. 12 (1977) 169--177 

IMPROVED A P P R O X I M A T I O N S  OF THE E X P O N E N T I A L  I N T E G R A L  
IN T E M P E R I N G  KINETICS 

M. BALARIN 

Akademie der Wissenschaften der DDR, Forschungsbereich Physik, Kern- und Werkstoff- 
wissenschaften, 8020 Dresden, GFR 

(Received January 25, 1977) 

The exponential integral in non-isothermal kinetic equations for tempering with 
linear heating can be represented in the following analytical form 

T 

I kT2/E e_E/kr, 
�9 "e -E/gr" dT'  = d l  -t- 4kT/E 

0 

which is one order in kT/E ,~ 1 more accurate than two other representations recently 
proposed in this journal [1, 2]. A few variants of approximated forms for the exponen- 
tial integral are compared with regard to the error due to the kind of approximation, 
which appears when activation energies are evaluated from experimental non-isother- 
mal kinetic curves. 

T 

In [1 ] it has been asserted that the integral .I e-E/kT" d T '  can be represented more 
0 

k TZ e -E/kT (variant A ) t h a n  by variant B--- [1 2kT] accurately by = E +  2 k T  , - - -  

k T  2 
- -  e -E[kr ; this assertion is indeed true. As a criterion it has been shown 

E 
that differentiation of the proposed expression A with respect to temperature 
restores the initial differential equation closer than for the case of  expression B. 
This serves as a necessary condition only, but not as a sufficient one. No com- 
parison with the exact solution for the above-mentioned integral has been proved, 
nor with tabulated numerical values of  this or near-related integrals [3 -8 ] .  (This 
latter examination, made earlier by Doyle [9], confirmed the high quality of  
approach A.) 

Nevertheless, the knowledge and utilization of the exact solution lead to a still 
better and simple approach, but also point to the care to be taken in further im- 
provement of  these approximations; for real needs (which means when the integral 
is applied for the evaluation of  kinetic process parameters), the temperature- 
dependence cart be of  more interest than the absolute values of  the integral itself. 
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170 B A L A R I N :  A P P R O X I M A T I O N S  OF I N T E G R A L  

The exact solution 

Obviously the differential reaction equations can b e  separated into a part 
containing only the conversion degree ~ (or concentration C or any related prop- 
erty) for any reaction mechanism f(c0, for instance f(~) = ~m(1 - c~), and into 
another part which contains the kinetic parameters: activation energy E and 
frequency factor K, and the experimental conditions: temperature T and heating 
rate q: 

d~ _ K e_e/krdT. (1) 
f(~) q 

Simultaneous integration on both sides leads to 

ct(T) T 

t dc~ K f e_e/~r , d T , =  S(T;  E, K/q)"  ~l(Y). (2) F(~) -- f (~)  - q 
cto 0 

Here we follow a suggestion given by Vand [10] to separate the right integral 
into two factors. The notation follows [11]. Vand also introduced the term 
"tempering" for experiments with a constant heating rate, in contrast to isothermal 
treatment, which he called ageing. 

The first term, the tempering function, expresses the main temperature-depen- 
dence 

K k  T 2 
S(T;  E, K/q) = - - - -  �9 e -E/kr . (3) qE 

The second term is then a dimensionless correction factor of the order unity 

nt 

~l(Y) = 1 - R(y)  - 1 - ~ ( -1 )"+ l (n  + 1)!y ' ;  (4) 
17=1 

~kT 
it universally depends only on the small quotient y = ~ -  ~ 1, and for real pro- 

cesses y is smaller than 0.1. Scmetimes it would be ccnvenient to show that r/_~ 1 
and then (1 - R) is written instead of q; it holds t ha ty  < R <~ r/ < 1. The values 
on ~/ as a function of y are demonstrated in Fig. 1. The representation by the 
product S-~/in Eq. (2) is the exact solution of Eq. (1), to which every other ap- 

proximation should be compared. S �9 t/equals ~ - .  p where p(x)  is the form 

for the description of the integral in (2), proposed and tabulated by Doyle [5]. 
The precision, and problems of convergency and semiconvergency of the series 
for R(y)  in Eq. (4) are well described in [4, 7, 8]. To obtain the highest precision, 

the upper limit is to be taken as n' = [ 1 - 2J; however, for small y the series 

converges quickly and the numerical value of n or R within an accuracy of some, 
for instance six digits, is reached earlier, with only very few terms of the sum. 
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BALARIN: APPROXIMATIONS OF INTEGRAL 171 

I t  m a y  be ment ioned  that,  by applying the same necessary criterion as in [1 ], 
one o f  course gets the accurate  identity: 

d F  1 de( d ( S .  q) K SE 
- - e - E / ~ T  = - -  ( 5 )  

dT  = f " dT dT  q k T  ~ 

(see Appendix).  
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Fig .  1. a :  ~7 ( cu rve  I)  a n d  d i f f e r en t  a p p r o x i m a t i o n s  ~7" as  a f u n c t i o n  o f  y = k T / E  ( l e f t - h a n d  scale) ,  
b:  t h e  bes t  a p p r o x i m a t i o n s  a r e  s h o w n  as  d i f fe rences  a g a i n s t  v a r i a n t  I I I :  ~* - -  (1 - -  2y)  ( e n l a r g e d  

1 1 
left scale), II: ~7" = 1" III: ~* = 1 - 2y; IV: ~1" . . . . .  v :  ~* - ; v I  and 

' 1 + 2 y  ' x / 1  + 4 y  

vi i :  see text 

Effects due to a wrong choice of  q(y) 

I f  one compares  approximat ions  used by various authors  for the integral in the 
solution (2), one can see that  they differ just  in the es t imat ion o f  the dimensionless 
factor  q. Some authors  restricted this to the first te rm in the series R(y), or neg- 
lected this sum; others found effective approximat ions  by polynomials  [2, 12]. 
N o t  all related papers  revealed a search for  an explicit analytical expression, 
but  there is no doub t  that  the main  temperature-dependence  of  the tempering 
function is o f  the fo rm S ( T ) ~  y2e-t/Y, and the same holds for  p(1/y)/q(y) = S. 
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172 BALARIN: APPROXIMATIONS OF INTEGRAL 

Therefore we will simply test wrong values of r/*(y) and look for the influence 
of this choice on the behaviour of S �9 t/* = F*(c 0 and correlated values. In Table 1 
the analytical forms of some such often-used r/*(y) are given. The corresponding 
absolute and relative errors can be compared;  the second_, column in Table 1 
shows the value 

A F  S(r/* - r/) r/* 

F S . r /  r~ 
1. (6) 

Further, one has to compare the influence on the first derivative as an analogue 
to Eq. (5) 

d(S.dT r/*) - dTr/*dS + S dt/*dT - d(S.dT r/) [1 + A(r/*)] . (7) 

Here 

A [r/*(y)] -- r/* - 1 + 2yr/* + y2 dr/* 
dy  (8) 

describes the deviation due to a wrong choice of t/* (see third column in Table 1). 
In [11, 12] a method was proposed which permits the direct determination of the 

activation energy from experimentally observed reactions; there is no longer a 
demand for trial and error curve fittings as in the method of Doyle [5]. In this 
method a graph In F(~) = In (S  �9 r/) v s .1 /kT  is to be calculated; this is a straight 
line and its slope is governed by the activation energy E. The method has the 
advantages that it makes use of the whole available information c~(T) on the pro- 
cess, and that only a single heating run and one sample are needed. The same 
procedure is valid with a slight variation for a ~ g l e  isochrorml annealing curve 
[13]. Accordingly, let us consider the following expression for the slope 

d In ( S .  r/) k T  z d(S .  r/) E 
. . . .  (9) 

d(1 /kT)  S . r/ d T  r~ 

and correspondingly 

d In (S �9 r/*) I YZ. dr/*] (10) 
~ - ( ~ - k ] r ) - = - E  1 + 2 y +  r/* ~ " 

As one can see for the slope factor in the fourth column of Table 1 for all the 
seconded variants of t/*, including the true t/, there always appears a first correc- 
tion term + 2y (which can easily be taken into account) and only the higher cor- 
rection terms of the order yZ (only variant II), ya (variant III) or y~ (variants IV, V), 
differ slightly for the chosen variants of t/*. In the crude variant II, where any 
dependence of r/ on y is neglected, one finds that the temperature-dependence 
of  the integral is mainly contained in S. 
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174 BALARIN:  APPROXIMATIONS OF I N T E G R A L  

Besides the approximations in an analytically simple form, mention should be 
made of  two approximations with a more complex polynomial approach: 

1 
Var i an tVI  [2] t / * = {  1@3 ) 

1 - 8 4 y  2 - ~ +  1 (1 + 2 y )  

0.995924 + 1.430913y 
Variant VII [14, 15] r/* = 

1 + 3.330657y + 1.681534y z 

Their behaviour is also illustrated in Fig. 1 and can be compared there. 

Discussion 

As was suggested at the beginning of this paper, the knowledge of the exact 
T 

solution for the integral J" e -gjkT" dT', and the separation of  this solution into a 
0 

product S .  t/ and the series t/(y), help in yielding a better approach than those 
used before. The first three terms in the sum for t/(y) are automatically covered by 
variant V, and therefore this variant is closer to the true solution than variant IV, 
where the third term in y2 is only partially taken into account, or variant III, 
which considers only the second term. 

Variant V also approaches more closely the behaviour of the true factor r/(y), 
when the initial kinetic equation is to be restored by differentiation (Eqs 7 and 
8), or when the slope factor for the determination of the activation energy is 
examined (Eq. 10). The numerical coincidence of variant V with the true value 
is better than 0.1% for y < 0.083, and better than 0.05 % for y < 0.064. With 
regard to the accuracy of experimental data, the theoretical estimation should 
now be made more accurate. 

Variant VI is a further improvement cn IV; the relative error over a wide 
region y --= 0.03 - 0.1 is small, but nevertheless of the order 0.1 - 0.2%, and it 
distorts the slope of r/; for y > 0.06 this variant rises faster than t/. 

Variant VII is a very good approximation in both numerical value and slope 
for high values of the argument y. It fails for small y, and gives a greater error 
than the preferential variant V for y < 0.075. 

Usually it is not the integral or S �9 t /which is necessary immediately. For the 
determination of activation energy values the derivatives (Eqs 9 and 10) are used. 
Effectively, a value/~ = E/q is obtained. Because r/varies only very slowly with E, 
one can get a first estimation both for 37 = kT/E and for 7/(37), and then one finds 
the real activation energy E = ~ �9 g/ or E = / ~  - 2kT + . . .  (Here T means the 
temperature at maximum process velocity.) 

There is another favourable possibility for the term 2y in the slope factor to 
vanish; this term is due to the factor T z in the_tempering fm~etion S. If  all experi- 
mental data F(c 0 are converted to F(a)/T 2, one obtains instead of Eqs (9) and (10) 
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BALARIN:  A P P R O X I M A T I O N S  OF I N T E G R A L  175 

I 1 d(l /kT)  - E 1 + . . . . .  t/ dy E[1 - 2y 2 + 8y 3 - + . .],  (11) 

so that nearly the true value E can be obtained in the first step. 
Lastly there remains a question of principle: Who needs an approximation to 

the integral, if  its exact solution is well known? The reaction runs as the solution 
describes it. Any attempt to recalculate such processes or to evaluate characteristic 
process parameters with the help of  approximated solutions retains systematic 
errors, maybe of  low values if a good improvisation is employed, but why not use 
the correct dependence? Perhaps an approximated solution can be more obvious 
and easier to handle. Then variants VI and VII are too clumsy, and still again 
the best variant seems to be 

T 

K ~ f  e -E/kT 'dr '= S 1 
q J x / i  + 4kT/E 

0 

o r  

(12) 

y2 1 
o e-1/Y" dY' = eS/y x/1-+ 4y (13) 

Appendix 

For the tempering function S/T," E, K(q), defined by Eq. (3), the following deriva- 
tives are valid: 

dS S (E + 2 k T ) =  SE 
dT - kT  z ~ (1 + 2y) (A1) 

d(S -r/) SE 
dT kT  2 

d2( S"  ~1) SE2 

dT k2T 4 

Only the proof  for (A2) will be given here; ~/(y) as defined in (4): 

d (S .  ~) dS dq 
d - ~ - - =  a T  "q + S d~  = 

SE 
k T  2 

SE [ = ~ .  1 + 2 y -  Y ( - 1 ) " + l ( n  + 1)!y ' -  

(A2) 

(A3) 

g. Thermal Anal. 12, 1977 



176 BALARIN: APPROXIMATIONS OF INTEGRAL 

q 
( - 1 ) ' + l ( n  + 1 ) ! n . y " + l - 2  ~, ( - 1 ) " + ~ ( n  + 1)!y"+~|. 

1 1 A 

Now in the brackets the term 2y vanishes with the first term in the first sum; 
the second and the third sums can be added 

= ~  1 - ( - 1 ) ' + l ( n  + 1) l y ' -  2 ( - 1 ) " + ~ (  n + 2) !Y "+~ �9 
1 

I f  the last sum is reordered with n' = n + 1, it is obvious that the two sums cancel 
each other and hence 

d (S .  q) SE 

d T  k T  2" 
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R~SUMI~ -- En cindtique non-isotherme l'int6gration de l'exponentielle peut 6tre repr6sent6e 
sous la forme an/dytique suivante: 

T 
f kT2/E 
. J  e-e/kr" dT" - X/1 + 4kT/E e 

EtkT 

0 

Dans le cas off kT/E <~ 1, cette repr6sentation est plus exaVte que les deux autres r6cemment 
propos&s dans ce p6riodique [1, 2]. On compare quelques variantes de forme approch6e 
en vue d'6valuer les erreurs dues ~t la m6thode d'approximation, qui se manifestent lors de 
l'6valuation des 6nergies d'activation ~t partir des courbes cin&iques non-isothermes obtenues 
exp6rimentalement. 
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BALARIN: APPROXIMATIONS OF INTEGRAL 177 

ZUSAMMENFASSUNG - -  Das in kinetischen Gleichungen for Tempern mit konstanter Heizrate 
auftretende Integral kann in der folgenden analytischen Form dargestellt werden 

T 

f kT~ -e/kr 
o e - e / k r ' d T ' -  41_F 4kT/Ee , 

die um eine Gr6Benordnung inbezug auf kT/E ,~ 1 genauer ist, als zwei andere Darstellungen, 
die vor kurzem in dieser Zeitschrift vorgeschlagen wurden [1, 2]. Mehrere Varianten fiir die 
gen~herte Darstellung des obengenannten Integrales werden verglichen hinsichtlich der durch 
die Art der Approximation bedingten Fehlerfortpflanzung bei der Bestimmung der Aktivie- 
rungsenergie aus experimentellen nichtisothermen kinetischen Kurven. 

Pe3~oMe- I/IHTerpa~, BcTpeqatol~vIfic~l B ne~t3oTepMHqeCK~IX KnHeTHqeCK/,IX ypaBHenHflX Mo~KeT 
6bITb anrtpoKcHMr~poBaH B c~e)ly~o~t~eM ana~nTnqecKoM Brtae 

T 
f kT2/E e_e/~r, e -E/kr" dT' -- / 1  

4k T/~E q- N/ 
o 

npnqeM aTa annporci~at taa  r~a O~HH r lop~OK OTHOCI/ITeJIbHO kT/E .~ 1 6onee TOqHO, qeM ~Ba 
npr~6:mnceanb~x npe,~cTaBnenrDt, ~pe)lnox<earIbie He~laaHo s D-TOM mypHane [1, 2]. CpaBrmaa~OTCn 
HeCKOJIE,KO BapnaHTOB npn6an~KeHnoro rtpe~cTaB;iem, Di B~ittieyra3armoro HnTerpana a norpem- 
HOCTI~, BHOCI~MbIe rrpa6nH~enrtflMi, t, nprt onpe~enear~a aHeprart aKxaBa~au n3 3Kcrlepl,tMeH- 
TaaLnLix Hen3oTepMnaiecrrlx IO~rIeTrtqecKrtX rpnBblX. 
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